3.4.75 \(\int \frac {\sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^{3/2}} \, dx\) [375]

3.4.75.1 Optimal result
3.4.75.2 Mathematica [A] (verified)
3.4.75.3 Rubi [A] (verified)
3.4.75.4 Maple [A] (verified)
3.4.75.5 Fricas [A] (verification not implemented)
3.4.75.6 Sympy [F]
3.4.75.7 Maxima [F]
3.4.75.8 Giac [F(-1)]
3.4.75.9 Mupad [F(-1)]

3.4.75.1 Optimal result

Integrand size = 25, antiderivative size = 117 \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {3 \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{2 \sqrt {2} a^{3/2} d}-\frac {\sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}} \]

output
-1/2*sin(d*x+c)/d/(a+a*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2)+3/4*arctan(1/2*s 
in(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))*cos(d*x 
+c)^(1/2)*sec(d*x+c)^(1/2)/a^(3/2)/d*2^(1/2)
 
3.4.75.2 Mathematica [A] (verified)

Time = 0.36 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.85 \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^{3/2}} \, dx=-\frac {\left (2+3 \text {arctanh}\left (\sqrt {-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )}\right ) \cot ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {2-2 \sec (c+d x)}\right ) \tan \left (\frac {1}{2} (c+d x)\right )}{4 a d \sqrt {a (1+\cos (c+d x))} \sqrt {\sec (c+d x)}} \]

input
Integrate[Sqrt[Sec[c + d*x]]/(a + a*Cos[c + d*x])^(3/2),x]
 
output
-1/4*((2 + 3*ArcTanh[Sqrt[-(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]]*Cot[(c + d* 
x)/2]^2*Sqrt[2 - 2*Sec[c + d*x]])*Tan[(c + d*x)/2])/(a*d*Sqrt[a*(1 + Cos[c 
 + d*x])]*Sqrt[Sec[c + d*x]])
 
3.4.75.3 Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.01, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4710, 3042, 3245, 27, 3042, 3261, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)}}{(a \cos (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4710

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 3245

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {3 a}{2 \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3 \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{4 a}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3261

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x) a^3}{\cos (c+d x) a+a}+2 a^2}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}\right )}{2 d}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3 \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

input
Int[Sqrt[Sec[c + d*x]]/(a + a*Cos[c + d*x])^(3/2),x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((3*ArcTan[(Sqrt[a]*Sin[c + d*x])/(S 
qrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d 
) - (Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2)))
 

3.4.75.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3245
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/( 
a*(2*m + 1)*(b*c - a*d))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + 
f*x])^n*Simp[b*c*(m + 1) - a*d*(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x] 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ 
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (Intege 
rsQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3261
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(a/f)   Subst[Int[1/(2*b^2 - (a*c 
 - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*S 
in[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 4710
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Sin[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
3.4.75.4 Maple [A] (verified)

Time = 6.10 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.19

method result size
default \(-\frac {\left (\sin \left (d x +c \right ) \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+3 \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \cos \left (d x +c \right )+3 \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sqrt {\sec }\left (d x +c \right )\right ) \cos \left (d x +c \right ) \sqrt {2}}{4 d \left (1+\cos \left (d x +c \right )\right )^{2} \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, a^{2}}\) \(139\)

input
int(sec(d*x+c)^(1/2)/(a+cos(d*x+c)*a)^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/4/d*(sin(d*x+c)*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+3*arcsin(cot( 
d*x+c)-csc(d*x+c))*cos(d*x+c)+3*arcsin(cot(d*x+c)-csc(d*x+c)))*(a*(1+cos(d 
*x+c)))^(1/2)*sec(d*x+c)^(1/2)*cos(d*x+c)/(1+cos(d*x+c))^2/(cos(d*x+c)/(1+ 
cos(d*x+c)))^(1/2)*2^(1/2)/a^2
 
3.4.75.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.08 \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^{3/2}} \, dx=-\frac {3 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) + 2 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

input
integrate(sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")
 
output
-1/4*(3*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt( 
2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) + 2 
*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x 
+ c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)
 
3.4.75.6 Sympy [F]

\[ \int \frac {\sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\sec {\left (c + d x \right )}}}{\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

input
integrate(sec(d*x+c)**(1/2)/(a+a*cos(d*x+c))**(3/2),x)
 
output
Integral(sqrt(sec(c + d*x))/(a*(cos(c + d*x) + 1))**(3/2), x)
 
3.4.75.7 Maxima [F]

\[ \int \frac {\sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^{3/2}} \, dx=\int { \frac {\sqrt {\sec \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")
 
output
integrate(sqrt(sec(d*x + c))/(a*cos(d*x + c) + a)^(3/2), x)
 
3.4.75.8 Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")
 
output
Timed out
 
3.4.75.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int((1/cos(c + d*x))^(1/2)/(a + a*cos(c + d*x))^(3/2),x)
 
output
int((1/cos(c + d*x))^(1/2)/(a + a*cos(c + d*x))^(3/2), x)